Gradient Computation & Automatic Differentiation

Oumar Kaba

‘é T McGill

School of Computer Science

(Fall 2025)



Learning objectives

using the chain rule to calculate the gradients
automatic differentiation

e forward mode
e reverse mode (backpropagation)



Landscape of the cost function

two layer MLP I mingy Y Ly™, f(=™; W, V)

loss function depends on the task

W, V) =g(Wh(V
f(z ) g( ( 93)) this is a non-convex optimization problem

W e RCXM

hidden

V e RMXD

input

https://losslandscape.com/gallery/


https://losslandscape.com/gallery/

Landscape of the cost function

two layer MLP

flx; W, V) = g(Wh(Va:))

supported by empirical and theoretical results in a special settings

many more saddle points than local minima

number of local minima increases for lower costs

therefore most local optima are close to global optima

eI use gradient descent methods

(covered earlier in the course)

miny v >, L(y™, f(z; W, V))

loss function depends on the task

this is a non-convex optimization problem

ma ny Cr|t|ca | pOIntS (points where gradient is zero)

local min

local max saddle point

A
SN LR

/ ““ i
ORI

these are not stable and SGD can escape

image credit: https://www.offconvex.org 4



Examples

Jacobian matrix

f:R—R we havethe derivative 7 f(w)€R

f:RP” - R gradient is the vector of all partial derivatives
Vuf(w) = [go: f(W), .-, gos f(w)]T € RP

f:RP - RM the Jacobian matrix of all partial derivatives

0
A
[ 0f1(w) 0f1(w) ]
ow; "t Owp
J = : . . e RMxD
note that we use J also for cost function . . .
0 fu (w) 0 fm (w)
L owr * " Towp g, — 2hiw)
o Ow;

J

for all three case we may simply write a% (w) , where M,D will be clear from the context

what if W is a matrix? we assume it is reshaped into a vector for these calculations



Chain rule

forf:x+—2 and h:z—y where 2,y,z € R

dy __ dy dz
de  dz dx
|

speed of change in y as we change z
speed of change in y as we change x

more generally = € RP,z € RY y e R®

@ — (‘)y @ in matrix form
Ox 0z Ox
C x D Jacobian |

C x M Jacobian

9y _ Oye Ozm
0zg 0z;m 024

T T
1 o . Jc
;%[
zl z2 o0 zM
L1 L2 ve Tp
T T



Training a two layer network

i =g(Wh(Vz))

output (¥ Y2 (le;
we want to minimize . } % ;[
: , >
J(W, V) — Zn (y("),g ( W h ( V oz )) hidden units g eee M
v X N
input (%1 T3 ... D
i .0 7 9

need gradientwrtWandV: g 7 ov J for simplicity we drop the bias terms

simpler to write this for one instance (n)

0 0

so we will calculate 577 L, 577 L and recover

N n A N N n AN
) =Yy g L™, 9™) and 2T =30 &Ly, §M)



Gradient calculation

using the chain rule

6 L —_ aL 8gc 611/0
Wem ™ 00c Ouc OWem

zm
depends on the activation function

similarly for V

0 OL 3@(; 0zZm 6(]771 I 1) Tp ,r
p— — B —— X w
Ld
depends on the activation function depends on the middle layer activation



Gradient calculation

using the chain rule

8 L _ 8[4 8'3)0 8’U,c
OWem =~ O0Uc Oue OWep,

depends on the activation function

, z
regression m

c=1
L(y,9) = 3lly — 9ll3
g=g(u)=u

combining the three terms above

_9_
oWy,

L(y, 9)

Ye — g(uc)

T

Ue = Zn]\le WC,mzm
Zm — h(Qm)

¢

Qm — Zd—l Vm,dwd
T

Lq

L= (y— 2 we have seen this in linear regression lecture!
m g

more generally:

0
aVVc,m

L = (gc - yc)zm 9



Gradient calculation

using the chain rule

6 L — 8L 6:‘)6 auC

8Wc,m 83}6 8“@ 8Wc,m

depends on the activgtion function

binary classification |

scalar output C=1

L(y,9) = —ylogy — (1 —y)log(1 — 9)

0 N L 1—¢
HLwD =4+ i

combining the three terms above
d

g = g(u)

gL =0 —y)zn

L(y,9)
Ye — g(uc)
t
Ue = an\le Wc,mzm
Zm = h(qm)
— (1+ev)" T
9y __ g)(l - A) dm = de:1 Vm dTd
ou T
Ld

looks familiar?
we had seen this in the logistic regression lecture

10



Gradient calculation L(y,9)

: : Ye — g(uc)
using the chaln rule
OL OUr Oue _ \M
U = o Wemz
BWcm L = Zk 1 09, Ouc OWem c = 2m-1 WemZm
|
Zm — h(Qm)
depends on the activgtion function 1\ _ D
P Im = 21 Vim.d%d
Zm, 1\
multiclass classification T
d
Cis the number of classes
L(y,9) = - Zc Ye log g y= g(u) = Softmax(u) softmax takes a vector and produces a vector
O 1 — % . .
=L = —= R ok A 1 — k=c
o . Y = Z—I;ul need to calculate the Jacobian %yk = ’!Jk:A( . )
' ‘ —YcYk k 7£ c

combining the three terms above

(‘)Wcm sv—L = (Qc T yc)zm

again, this is familiar (softmax regression lecture)



Gradient calculation

gradient wrt V: we already did this part

avm,dL — Zc Qe Oue )=, 0qm OV a

logistic sigmoid
0de = Z (9 —

= Zc(gc - Y

|
| =

depends on the middle layer activation
logistic function o (gm)(1 — o(gm))
hyperbolic tan. 1 — tanh(qm)2

RelLU {0 gm <0

1 ¢,>0

J(Qm)(l o O-(Qm))md
Zm(1 — zp,)xq =

for biases we simply assume the inputis 1. x

L(y,9)

Yo = 9(u.)

e = Yt Wemzm
Zm = h(gm)

v, d'] Don 2 (@9 — y™) 20 (1 - zfﬁb))xén)

=1

12



Gradient calculation

a common pattern

(9 L _ 8_[/ 3Qc 811,0
aWQm o 8@0 auC OWc,m
oL |

Ou, input from below &y,

error from above

an7d L o ZC 8@0 auC 8Zm aqm avm,d
oL |

error from above

oqm input from below X4

L(y,9)
Ye — g(uc)

Zm = h(Qm)

T D

dm — Zd:1 Vm,dwd
T

Ld

13



Example classification

x g x
K oy %gg*
xEx %

x x
oy x X x
X§§¥X§§XXEXXXX x
x

Iris dataset (D=2 features + 1 bias)
= 16 hidden units
C=3 classes

cost is softmax-cross-entropy

softmax(u)

10 nll = - np.mean(np.sum(u*y,

1) - logsumexp(u)) 9
nll J =

L(y,9)

y = softmax(u)

T

Ue = Zn]\le Wc,mzm

Rm — G(Qm)

1\
Zd ) Vin,dTd

'I‘

Lq

14



Example classification

« x
< V%& XX

13

return

Iris dataset (D=2 fea
= 16 hidden units
C=3 classes

dw, dv

tures + 1 bias)

d

Q
SefSl
‘ &~
—~~ {é\)
| |

Ny
S \N/

L(y,9)

y = softmax(u)

1\ M
uc::§:mzlvumnzm

Zm = U(Qm)
N
= Zé):l Vin,dTa

T

Ld

check your gradient function using finite difference
approximation that uses the cost function

1 scipy.optimize.check grad

15



Example: classification

Iris dataset (D=2 features + 1 bias)
M = 16 hidden units
C=3 classes

using GD for optimization

B W N

while Condition:
dw,

w
v

dv = gradient(x, y, w, V)
w - lr*dw
v - lr*dv

the resulting decision boundaries

X
i X
e X =
T
A x><% XX x
x ¥ X
X X
X X X X
XX % X
g ¥ X X x
X Xx % £ x X X
><><gs §><§ ¥~ X%
X X X
X X
X
x ¥ g X
XxX X X X
= X % g)(g §>< St
x X
2.0 2.5 3.0 3.5 4.0 4.5

16



Automating gradient computation

gradient computation is tedious and mechanical. Can we automate it?

using numerical differentiation?
approximates partial derivatives using finite difference g—j; ~ f(erez_f(w)
needs multiple forward passes (for each input output pair)
can be slow and inaccurate
useful for black-box cost functions or checking the correctness of gradient functions

symbolic differentiation: symbolic calculation of derivatives
does not identify the computational procedure and reuse of values
automatic / algorithmic differentiation is what we want

write code that calculates various functions, e.g., the cost function
automatically produce (partial) derivatives e.g., gradients used in learning

17



Automatic differentiation

m use the chain rule + derivative of simple operations x, sin,

"

use a computational graph as a data structure (for storing the result of computation)
break down to atomic operations L = %(ww — y)2 9

build a graph with operations as internal
nodes and input variables as leaf nodes

there are two ways to use the computational graph to calculate derivatives

forward mode: start from the leafs and propagate derivatives upward

reverse mode:

1. first in a bottom-up (forward) pass calculate the values q,..., a4
2. in a top-down (backward) pass calculate the derivatives

this second procedure is called backpropagation when applied to neural networks

ax
az
as
a4
as
ae

ar

. 8

|

8
B EHE—=

18



Forward mode

y; = sin(w;z + wy)

Yy = cos(wix + wy)

suppose we want the derivative gﬂ where {
w1

we can calculate both ¥;,y2 and derivatives Oy1 O jng single forward pass

ow; Ow;
evaluation partial derivatives
@ CL-1 —0 we initialize these to identify which derivative we want
42— a =1 this means D = g—D
az = & ag = 0 e
as — as X as as = as X dg + as X as
as = a4 + a1 ds = d4 + a1
ag = sin(as) dg = ds cos(as)
a7 = cos(as) a7y = —ds sin(as)

note that we get all partial derivatives g—i in one forward pass
19



Forward mode: computational graph

suppose we want the derivative 91 where

we can represent this computation using a graph

y; = sin(w;z + wy)
Yy = cos(wix + wy)

once the nodes up stream calculate their values and derivatives we may discard a node

e e.g,o0Nnce as,as are obtained we can discard the values and partial derivatives for a4, ds, a1, a:

evaluation
ar = Wy
as? = W1
as — &

as = az X as
as = a4 + ay
y1 = ag = sin(as)

y2 = a7 = cos(as)

y1 = ag = sin(as) @ Y2 = ay = cos(as)

a5:a4+a1

7 o

as = Wi ag =& 20



61_6:0 67:1

Reverse mode

08 d; = —dysin(as) + dg cos(as)
suppose we want the derivative Oyy where  y; = cos(w;z + wy) ay = ds E a1 = ds
wy
first do a forward pass for evaluation a3 = asdy é h a3 = asdy
1) evaluation
a; = Wy then use these values to calculate partial derivatives in a backward pass
az = W1 2) partial derivatives
J— (9’1}‘) — —
s daz ar 1 this means [ | = %
J— 0}/2 o Sy —
as = as X as m—() ag = 0
5 Dor = ar 0a; T Dar dar = 1 o) as = —aysin(as) + as cos(as)
= — sl 0y __ Oy das __ : - __ T
Y1 ag sm(a5) T = 07% = —sin(wz + wy) a4 = as
= a7y = cos(a Oy _ Oyp _ Oy2 Oaa _ _ : 1o = a.
Y2 7 ( 5) Or = Oaz = Oay Oag ~— w1 Sln(ujlaj + ’LU(]) 3 a4a?2
Oya __ Oy _ Oy» Baa _ _ o 1o = Q.
ow; = Oas =~ Oayg Oas € Sln(wlm + ’(U[]) 2 asasz
Oyy __ Oys __ Oys Bas __ : - =
dwy ~ Oa; — Oaz Oa; SlIl(’LUl.’B + w()) 1 — G5
Oys 21

we get all partial derivatives 0] inone backward pass



Reverse mode: computational graph

suppose we want the derivative

we can represent this computation using a graph

1.in a forward pass we do evaluation and keep the values
2. use these values in the backward pass to get partial derivatives

1) evaluation

a1 = Wy
az = Wy
as — T

as = as X as
as = a4 + ap
y1 = ag = sin(as)

y2 = a7 = cos(as)

Yo = cos(wix + wy)

y1 = as = sin(as)

as = a4 + a1

y2 = a7 = cos(as)

a4 = as X as i h(ﬂﬂm
as =&
a2 = w1

parents

children

Xk

™




Forward vs Reverse mode

forward mode is more natural, easier to implement and requires less memory

asingle ass calculates 9y 9ye
g p aw , e o o ’ 8w
however, reverse mode is more efficient in calculating gradient  Vuy = [, ..., 724"

this is more efficient if we have single output (cost) and many variables (weights)
for this reason, in training neural networks, reverse mode is used
the backward pass in the reverse mode is called backpropagation

many machine learning software implement autodiff:

® autograd (extends numpy)
® pytorch

® tensorflow




Improving optimization in deep learning

Initialization of parameters:

e random initialization (uniform or Gaussian) with small variance
= break the symmetry of hidden units

e small positive values for bias (so that input to ReLU is >0)

weight layer
weight layer

models that are sim p|er to optimize: this block is correcting for the residual error in the predictions of the previous
layers

X

e using ReLU activation
identity

o using skip-connection z{*} = ReLU(W{*UReLU(... ReLU(W{tg{f) ) 4 zith
e using batch-normalization (next)

Pretrain a (simpler) model on a (simpler) task and
fine-tune on a more difficult target setting (has many forms)

\Q—/ continuation methods in optimization

e gradually increase the difficulty of the optimization problem
\'/ ¢ good initialization for the next iteration

\/L// curriculum learning (similar idea)

l ¢ increase the number of "difficult" examples over time
' e similar to the way humans learn

\ 4

image credit: Mobahi'16

24



Batch Normalization

e gradient descent: parameters in all layers are updated

e distribution of inputs to Iayerf changes

e each layer has to re-adjust ¢

e inefficient for very deep networks activation for the instance (n) at layer

N {g} (n ) pith(n) 4
m m
BEEE normalize the input to each unit (m) of a layer £ {4}
unit m O'm

alternatively: apply the batch-norm to W{E}CE{K}

each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution)

introduce learnable parameters ReLU("y{E} BN(W{K} s ) + 5{5} )

mean and std per unit is calculated for the minibatch during the forward pass
we backpropagate through this normalization

at test time use the mean and std. from the whole training set

BN regularizes the model

the change in distribution of activations is not a big issue empirically
BN works so well because it makes the loss function smooth 25



Summary

optimization landscape in neural networks is special and not yet fully understood

¢ exponentially many local optima and saddle points
* most local minima are good
* calculate the gradients using backpropagation

automatic differentiation

e simplifies gradient calculation for complex models

* gradient descent becomes simpler to use

e forward mode is useful for calculating the jacobian of f : R — R” when P > Q
* reverse mode can be more efficientwhen @ > P

= backpropagation is reverse mode autodiff.

Better optimization in deep learning:

® Detter initialization
* models that are easier to optimize (using skip-connection, batch-norm, RelLU)

® pre-training and curriculum learning

26



